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INTRODUCTION

In [1), the authors considered the problem of
finding the optimal surface current on a cylin~
der which maximized the power radiated in an
angular sector. That approach to antenna syn-
thesis is further developed here in the context
of a scattering problem. Specifically we prove
the existence of an optimal impedance for a
general cylindrical surface; optimal in the
sense that when a field is incident upon the
surface, the power scattered in an angular sect-
or is maximized.

We consider an infinite cylinder of arbitrary
cross-section in the presence of either E or
H polarized incident fields. It is known, e.q.
(8], that under suitable restrictions on the
geometry and constitutive parameters of the
scatterex, among which is a requirement that the
radius of curvature be large relative to skin
depth, the transition conditions at the surface
of an imperfectly conducting scatterer may be
replaced by so-called impedance boundary condi~
tions. Then if D, and D. denote the domains
exterior and interior :ospecc1v01¥ to a simply
connected-closed curve 23D in the scat-
tering problea may be :cd¥cad to tindinq a

scalar function u(p) = ul(p)+u¥(p) such that
(1) (93+k?)u®(p) =0, pen,
w® o8 1/2
(2) 3¢ "iku o(l/x" %)
(3 ¥ oinpru=0, peap

where u is a §nown incident field, = (x,y)
is a point in R4 with magnitude r = Tp} =

x“+y and 3/3n is the derivative in the
direction of the outer normal to 23D, pointing
from 3D into D,. Here u denotes the non-
vanishing, 2-component of either or R,
depending on the polarization, and n(p) de-
notes the equivalent surface impedance. The
boundary 23D is assumed here to be Lyapunov of
order 1 (e.qg. (7]) which ensures that the unit
normal at p, np, is Lipschitz continuous on
aD.

EQUIVALENT INTEGRAL EQUATIONS

Let R(p,q) denote e distance between two
typical points of R<. A fundamental solution
of the Helmholtz equation will be denoted by
v{p,q) which for convenience we normalize as

) vipo = - 18P e

Furthermore we let 3/3ny and 3/3n} denote
the normal derivative vhgn p - D Zfrom D.
and D, respectively although the direction
is always that of the outer normal.

As in (2] the linqlc and double layer distribu-
tions at p & R4 with density u € Ly(3D) will
be denoted by (8u) (p} and (Du) (p)
tively, i.e.,

respec-
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vyip.q)u(q) dsq:

(Su) (p) 1= f
(5) D
(0w (p) = f Red) (q) s,
aD q

We also define, p € aD,

(6) (Ku) (p) := (Dw)(p).
Note that K: Lp(3D) + Lp(3D) is compact, e.g.
(71, and dengte its ad)oxnt by K*. Fror surface
layers in , the usual jump conditions hold
for these densities, at least almoss everywhere
on 3D and this remains true in i.e.,

—5 (Su) (p) = (zu+Ku) (p),

) ng
lim _ (Du) (p) = (u+K*) (p)

p + 3D”

where K is the complex conjugate of K.

With this notation, representations of solutions
of the Helmholtz equation obtained by applying
Green's Theorem or the Helmholtz representation
lead tg the following representations for u$
and u

f {éggigl v(p,q)-ud(q) %%— (p,q)1 ds
, [ 22%(p), peD,

(p) - (Du®) (p) = 1 w$(p), p € D
0 + P E€D_

(8)

- s 5

and

0 , p€ D,

; i :
(9) (Du‘)(p)-[s %%—](p) ={ u'(p), pe€ D
ZuL(p). p€0D_.

These relations may now be used to derive a pair
of boundary integral equations for the total
field. First note that, with (6) these relation

may beiwritten, for p € 3D, as

s
(10) o = s[%%—]-iﬁus
(11) ul = Frut [g: .
Consequently
(12) u = uleyd = 2ui+s[%§]-F'u.

Invoking the boundary condition (3) this may be
rewritten as

(13) (1+5n+k*)u = 2ub,

where, we emphasize, ui is the known incident

field. Likewise since

(1) u®(p) = % [E[g: ]-ou_J(p). PED,
and

(15) ui(p) = % [;ui-s[%ﬁii1(p), p €D_
o - -

0

Pay

PP

WA S T A AR T T e Py




we have, taking normal derivatives and using the
iu-p conditions for the derivative of a single
ayer,

[ ]  §
(16) ?_; - % E%; +K g-g_l- o4

and

i i R
u 1l |3u u 1 i
an Tr;'!' ﬁ\;'xgn_’l'bn“'

It follows then, with the boundary condition
{3), that the total field u must satisfy the
equation
aui

(18) (-n+xn+bn)u = 2 - °

. | 4
In (2] the authors have shown that in R this
pair of integral equations has a unique solution
which gives rise to a solution {in an appropri-
ate generalized sense) of the exterior problem.
That approach may be followed in RZ2 and the
corresponding result is contained in the follow-
ing.

Equivalence Theorem:

Let n € L,(3D), Imk >0 and Im (kn) 2 O.
Then u = yleud is a solution of the exterior
Robin problem

du

i) u€C,(D): u, 37 € Ly(3D)
i) (2kdHut =0, pen,, (vRkPulan,

{19) P €D

t ]

510 e -iku® = o(1/rMY

iv) %ﬁ- +Nu =0 a.e. on 3D,
p

if and only if u is the unique solution of

(20) (I+4Sn+K*)u = 2u1
3y
{21) (=n+Kn+D Ju = 2 o .

THE PFAR FIELD OPTIMIZATION PROBLEM

In the far field, the scattered field u® may
be written as ik

3
(22) u® = S £(0)vo(1/r/?

r

where £(6) is the far field cocefficient.
Since 3D is bounded, we may employ the asymp-
totic properties of vy(p,g) together with the
integral representation (8) to represent £(8) as

-Ini/4 s
£(e) = ./i—k !a etk 9 L (qru(q)
3 D

(23) ‘
- & -ni@rutqrriki-dut i) ds
nq q q

where £ = (cos 6, sin 8) and q = (xg.y ) is
a point on 3D. Defining integral operators
K) and K33 L(3D) = L3(0,2n) in terms of the

kernels o 3KT°3 4o 1k§-nqc"k"q respec~
tively, we may write £ as

i
(200 £10) = ll(nu')-xzu'o-xl[%—:— *nu"].

Note that the far field is determined uniquel
{via the unique solution of the boundary ineo-
gral squations) by the impedance n.

The preliminary remarks allow us to pose a
meaningful optimisation problem. We consider
the impedance, n, to be at our disposal and
ask for those n which are optimal with respect
to some oriterion expressed in terms of the
induced far field.

Specifically, for a given closed, bggndog convex
subset U of Lo(iD) cal e class o
admissible controls, find ng € U for which

the functional
2n

(25) g, (.0 = Jo a(8) 1201 ]2 ao

is a maximum. Here a(6) is the characteristic
function of a subset o C (0,27] and Q, rep-
resents the far field power flux through the

set a, or the integral of the differential
scattering cross section over the set u.

An alternate treatment of this problem in the
case when k and n are real is given by
Kirsch (5]. That analysis is based upon the
existence of a unique solution of the exterior
Robin problem proved using a layer asnsatz which
results in a single boundary integrsl equation,
rather than the pair (20)-(21), where the kernel
is no longer the free space Green's function but
is modified as suggested by Jones {4]. The idea
of using the uniqueness of sol.tions of the
boundary integral equations to establish compact-
ness properties of the set of admissible pairs
is found in [5}. The situation here is more
general and the proofs are, consequently, more
complicated.

For this problem, we wish to prove the existence
of an optimal choice ng € U where U is a
closed bounded convex subset of L,(3D}. Notice
that, since L.(3D) is the dual space of L;(3D)
U is weak* sequentially compact. Furthermore,
since Ll(aD) is separable, the relative weak®*-
topology on the set U is metric (see Dunford
and Schwartz (3; p. 426)). Thus if g: La(3D) -
X, X a Banach space, then g/ is weak®*-~
continuous provided £, -~ £ in the weak*-topol-
ogy on U implies g!y(£n) =+ giy(g) in X.

The following results show that the map n -+ £
of U - L,(0,2n) is continuous with respect to
the weak*-topology on U. This fact, together
with the continuity of the map Qq: Lp(0,2m) -
R will establish the required existence result.

Recall that, given any n € U, there exists a
unique solution u of the boundary integral
equations (20)-(21). We will refer to such an
impedance~solution pair (n,u) as an admissible
pair. The set of all admissible pairs will be
denoted by Q.

Theorem 1: The set 2 C La(3D)xLy(3D) is
bounded In the product topology generated by the
norm topologies of L, and L.

Proof: Suppose this were not the case. Since

U Is bounded in Lx(3D), any sequence In,} C
U is bounded in the L_ norm hence there would
exist a sequence {(ny,um)} € 2 such that
'!“NIILz(QD) + ®» as m > =, Moreover, since U

is weak* sequentially compact, we may assume that
Nw*n €0 in the weak®-topology of U.

Define functions Y € Lz(an) by

: ] t
U+ U/ iugl .

Then |ly il = 1 and, since (I’E;’s"m)“m = 2ut,
= . 2u

(26) (I*K'OSn.)wm - TTE;TT .

But ui is a fixed incident field and so, as

m-e, |l2ul/|Juglll| +0. Furthermore, after
perhaps the extraction of a subsequence, im =~ ¥
weakly in Ly(3D) _since |[ymil <1 for all m.
Now the operator RX* is compact on L3(3D) and
so Kny, - Koy atrongly in L,(3D). iikovxso,
after perhaps the extraction oi a further sub-
sequence, we may assume that the sequence {ngipm!}
is weakly convergent to a function € L,(3D).
The cowmpactness of the operator $ now guaran-
tees_that S(n_y¢_) - 8§ strongly and s0 Y, *
-8,-R*y  serondl¥ in £,(30) since Ym salis-
fies equation (26). lug since iy, - ¢ weakly,
we see that ¢ must satisfy the homogensous
equation




2n (ni‘)wso -0,
This result, _together with the strong convergence
of vy to K*W+S,, implies that ¢, +~ ¢
strongly in thas).

]
On the other hand, ¥y + ¥ strongly in L3(3D)
implies that n ¢, + nv weakly in Lp(30)
since, for any ¢ € Ly(2D),

|<ngg=n¥,0>| < l<ng (4o=¥) 0>+l <(ny=n)v,e>|

@0 wlvgeel e[ g 0B as].

But ¢y - ¢ strongly so that the first term on
the right converges to zero while the second
term likewise converges to zero since ng - n
in the waak?-topology Of Le(dD) and vé €

Ly (3D). So, in fact, ngiy * NV weakly,

h*neo Shyim > 3Ny in :2730), and the function
b satisfies

(29) (I+K*+8n)9 = 0.

Now, consider the u}unc.
u 1
(30) D vy ™ [2 - TTE;TT =(=n *Kn ) 9,.

We know from the construction of the sequence
(¢y] that ¥y = % in La(3D) while ngey
2y weakly in Ly(3D). Hence the compactness
of the ocperator K implies that the functions
OpVm converge weakly ia Lj(3aD) to ¢ :=
~,~Kny. Moreover, since ¢ is a solution of
(29), the results of section IV of (2] show
that % € 0(D,). We wish to show that, in fact,
Dy =K.

n

o this end, lat 4 € Cl(3D) and note that
> € 0(D2) (see [6]). Look at the functional on
x.,um defined by ¢. Then we have

(31) <D 9=C.9> = <D #=D 0 #>+<D ¥ ~E.4>.

The second term on the right converges to szero
since D ¢y, * £ weakly. The first term on the
right u9 go rewritten as

(32) <D (9=vy) 9> = <y=y,,DRe>

which converges to zero’ since ¥ * ¥ strongly
in Ly(3D). Hence Dpy = § and s0 % satis-
fies the equation

(33 D¢ = n¥-Kne
or

(34) (-nmn#Du). = 0.

put the pair of integral equations has a unique
solution so that, again we conclude that ¢ = 0
which is a contradiction since vy, + v in
L2(3D) and ||wml] = 1. We conclude, there-
fore, that 0 is bounded.

Theores 2: Let L, (3D)xL3(3D) be equipped
with the product topologyznlutv. to the weak*-
topology on La(3D) and the norm topology on
!-i(an). Then the set of admiseible pairs

18 closed with raspect to this product topology.

Proof: Here we assume that we are given a
sequence of admissible pairs ((ng,ugl} € A
such that ng, » n in the weak®-topology of
lo(30), and "u, + u strongly in La(3D). We
must show that (n,u) € 2. We use bounded-
ness of Q to ensure that there is a ¢ €
L32{3D) such that + ¢ weakly, and then
use the fact that the pairs are admissible to
show that the functions l:. converge strongly
to 2ui-Keu-84. The proof now proceeds in a
manner completely analogous to the preceeding
proof, and we need not repsat it here.

Theorem }: The map . n - £ defined by the far
eld relation

.-311/4
/Bnk

i PN

- B q@ et @ vikEenget @) ds
g q

where u® = u-ui for u the solution of (20)~

(21) and £ = (cos &, sin 8), is continuous from

the weak*-topology of La.(3D) to the strong

topology on r.z(o,zn.

Proof: To see this, let (n,]} be a sequence in
the closed bounded convex set U C L,(3D) such
that ny - n in the weak*~-topology. Then to
each ngm there corresponds a unique solution
of the pair of boundary integral equations
(20)~-(21). Hence the sequence of functions ng
generates a sequence of admissible pairs
{(ng,uy)} € Q. Since according to Theorem 1,
the class Q is bounded there exists at least
a subsequence {(np, /Uy )} such that n, <= n

in the weak*-topology, up, 6 + u € L3(3D) weakly,
and the sequence of producgl m j“‘ 3 converge
weakly to some ¢ € LZ(DD).

£(6) = I e ikE 9 (qrut(q)
(3% o

q

As in the proof of Theorem 1, it follows from
the compactness of the operators K* and 8,
that indeed the functions uy converges

" strongly to the function u and so, by Theorem

2, the pair (n,u) belongs to Q.

Returning now to the original sequence {ug)

of solutions, we see in fact that um - u in
L2(3D). 1Indeed, if this werc not the case, then
we could consider the gsequence {ug)} consisting
of all those elements of the original sequence
which do not appear in the convergent subsequence
{ug,}. Again we could extract a subsequence

(ﬁ.") which converges weakly to some v € Lj(3D.

Applying the argument above to this new subse-~
quence, we conclude that the pair (n,v) balens;:.
to . But the uniqueness of solutions of (20)~-
{21) for each n € L_,(3D) implies that v = 4,

We have, then, that + u strongly in L,(3D),
and n.na < nu weakly in Ly(3D). Denoting the
far field associated with u, by f, and re-
calling the definition of the far field (23), ve
see that f can be written in tprms of ug-u
(which converges strongly to u-ul) and two
compact operators K; and X9 which map
La(3D) < La(0,2v). &pociucnhy

£08) = Ky lng (ug-ut)1-K, ((u-uh))

s or (385 engut]

and so

ty = KyIntu-ut) Kyl tumuty)

i
"‘1[3:—‘ "'“t] -t
strongly in Lz(o,za).

(37)

We may now show that our optimization problem has
an optimal solution in 4.

Theorem 4: Let £ be the class of admissible
I7s defined above and let Q, be defined as
in (23). Then there exists a pair (ng.,uy) € @

such that

(38) @, (ng,ug) 2 Q (n,u) for all (n,u) & q.

Proof: 'This result follows immediately from the
observation that, in light of Theorem 3, the map
n + Qai(n,u) * is a continuous mapping from L.(aD) =«
L3(0.3%) defined on the weak*-sequentially




compact set U C L (3D).

Moreover from the results proven above we have
the following.

Theorem S: If {nm,um} C @ 1is a minimizing
sequence such that np - n weak*. Then

the unique sgolution ug og (20)-(21) asso~
ciated with ng is the optimal total field
and up, + u; strongly on 3D.

ACKNOWLEDGEMENT

This research was supported by the U.S. Air
Force under grant AFOSR~79-0085.

REFERENCES

1] T. S. Angell and R. E. Kleinman, Optimal
Control Problems in Radiation and Scatter-
ing, Proceedings of Symposium on Applied
Mathematics dedicated to the late
Professor Dr. R. Timman, A. J. Hermans
and M. W. C. Oosterveld, ed., Delft
University Press, Sijthoff and Noordhof:
International Publishers, 1978, 78-90.

{2) T. 8. Angell and R. E. Kleinman, Boundary
Integral Equations for the Helmholtz
Equation, the Third Boundary Value Problem,
to be published.

(3] N. Dunford and J. T. Schwartz, Linear
Operators, v. I, Interscience Publishers,
New York, 1958.

(4] D. S. Jones, Integral Equations for the
Exterior Acoustic Problem, Quart. J. Mech.
Appl. Math., 27, 1974, 129-142.

(5] A. Kirsch, Optimal Tontrol of an Exterior
Robin Problem, tc be published.

{6] R. Kress and G. F. Roach, On Mixed Boundary
Value Problems for the Helmholtz Equation,
Proc. Roy. Soc. Edinburgh, 77a, 1977,
65-77.

(7] S. G. Mikhlin, Mathematical Physics, An
Advanced Course, North Holland Publishing
Company, Amsterdam-London, 1970.

(8] T. B. A. Senior, Impedance Boundary
Conditions for Imperfectly Conducting
Surfaces, Appl. Sci. Res., B, 8, 1960,
418-436.




